Contents


Create Your Instance

  1. Please follow GCP Setup instructions to 'select image' part.
  2. In boot disk, instead of custom image, select 'Ubuntu 16.04 LTS' from 'OS images'.

Basics

  1. Update & upgrade System
    sudo apt-get update 
    sudo apt-get upgrade
    
  2. Install python 3.6, pip, gcc, etc.
    sudo add-apt-repository ppa:deadsnakes/ppa
    sudo apt-get update
    sudo apt-get install python3.6
    wget https://bootstrap.pypa.io/get-pip.py
    sudo python3.6 get-pip.py
    sudo apt-get install build-essential
    sudo apt-get install git zip unzip
    
  3. Verify GPU, Linux version, kernel headers and development packages
    lspci | grep -i nvidia
    uname -m && cat /etc/*release
    uname -r
    sudo apt-get install linux-headers-$(uname -r)
    

CUDA and cuDNN

  1. Install CUDA 9.0
    wget https://developer.nvidia.com/compute/cuda/9.0/Prod/local_installers/cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb
    mv cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64-deb cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
    sudo dpkg -i cuda-repo-ubuntu1604-9-0-local_9.0.176-1_amd64.deb
    sudo apt-key add /var/cuda-repo-9-0-local/7fa2af80.pub
    sudo apt-get update
    sudo apt-get install cuda
    echo 'export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}' >> ~/.bashrc
    echo 'export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}' >> ~/.bashrc
    source ~/.bashrc
    
  2. Install cuDNN v7.0.5

    Download cuDNN v7.0.5 from NVIDIA as in Local Setup

    gcloud compute scp [LOCAL_FILE_PATH] ecbm4040@your-instance-name:~/
    tar xvf cudnn-9.0-linux-x64-v7.tar
    sudo cp cuda/include/cudnn.h /usr/local/cuda/include
    sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
    sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
    
  3. Check CUDA installation. You can use "nvcc -V" to check the version of CUDA toolkits. And "nvidia smi" can help you check availble GPU device.

Miniconda and other packages

  1. Download Miniconda
    wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
    
  2. Install Miniconda
    bash Miniconda3-latest-Linux-x86_64.sh
    source ~/.bashrc
    
  3. Create your own virtual environment in Miniconda
    conda create -n dlenv
    
  4. Activate the virtual environment.
    source activate dlenv
    
  5. Install baisc packages.
    conda install pandas numpy scipy pillow matplotlib scikit-learn
    conda install jupyter notebook
    

Tensorflow

  1. Use pip to install tensorflow-gpu.
    pip install tensorflow-gpu
    
  2. Open python and try to run a simple tensorflow function.

Now you can proceed to Step 3 in GCP Setup.